Uncovering Latent Knowledge: A Comparison of Two Algorithms
نویسندگان
چکیده
At the beginning of every course, it can be expected that several students have some syllabus knowledge. For efficiency in learning systems, and to combat student frustration and boredom, it is important to quickly uncover this latent knowledge. This enables students to begin new learning immediately. In this paper we compare two algorithms used to achieve this goal, both based on the theory of Knowledge Spaces. Simulated students were created with appropriate answering patterns based on predefined latent knowledge from a subsection of a real course. For each student, both algorithms were applied to compare their efficiency and their accuracy. We examine the trade-off between both sets of outcomes, and conclude with the merits and constraints of each algorithm.
منابع مشابه
A comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملThe Comparison of Two Models for Evaluation of Pre-internship Comprehensive Test: Classical and Latent Trait
Introduction: Despite the widespread use of pre-internship comprehensive test and its importance in medical students’ assessment, there is a paucity of the studies that can provide a systematic psychometric analysis of the items of this test. Thus, the present study sought to assess March 2011 pre-internship test using classical and latent trait models and compare their results. Methods: In th...
متن کاملImplementation and Assessment Challenges in Iranian Secondary High School EFL Program
Paradigm shift in language education has caused many countries including Iran to reshuffle their public EFL educational program. However, such a promising trend in Iran has entailed serious challenges, which necessitated this study aimed at collecting data from 70 teachers and 70 students to investigate the CLT challenges in terms of both teachers' pedagogical and assessment areas. A Partial Le...
متن کاملAn Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...
متن کاملA knowledge-based NSGA-II approach for scheduling in virtual manufacturing cells
This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...
متن کامل